NASA TN D-7830

EFFECTS OF TIME-SHIFTED DATA ON FLIGHT-DETERMINED STABILITY AND CONTROL DERIVATIVES

Sandra Thornberry Steers and Kenneth W. Iliff Flight Research Center Edwards, Calif. 93523

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1975

		· · · · · · · · · · · · · · · · · · ·					
1	Report No. TN D-7830	2. Government Acces	ssion No.	3. Recipient's Catalo	g No.		
4	. Title and Subtitle	<u> </u>	· · · · · · · · · · · · · · · · · · ·	5. Report Date			
	EFFECTS OF TIME-SHIFTED DATA	A ON FLICHT-DET	ERMINED	March 1975			
	STABILITY AND CONTROL DERIV		ERMINED	6. Performing Organi	ization Code		
7.	. Author(s)			8. Performing Organi	zation Report No.		
l	Sandra Thornberry Steers and Ke	enneth W. Iliff		H-849			
<u> </u> _				10. Work Unit No.			
9.	Performing Organization Name and Address			501-26-01			
l	NASA Flight Research Center		ţ	11. Contract or Grant	. No		
1	P. O. Box 273			The Contract of Grant			
i	Edwards, California 93523				<u></u>		
12	Sponsoring Agency Name and Address	······	·····	13. Type of Report a	nd Period Covered		
'-'				Technical Not	te		
	National Aeronautics and Space Ad Washington, D. C. 20546	dministration		14. Sponsoring Agence	y Code		
15.	Supplementary Notes			127	**************************************		
<u></u>							
16.	16. Abstract						
1							
	Flight data from five aircraft were shifted in time by various						
	increments to assess the effects of time shifts on estimates of stability						
	method.						
	Derivatives could be extracted from flight data with the maximum						
	likelihood estimation method even if there was a considerable time shift in the data. Time shifts degraded the estimates of the deriva-						
	shift in the data.	Time shifts degra	ded the estimates of	the deriva-			
	tives, but the deg	consistent rather tha	n a random				
pattern. Time shifts in the control variables caused the most degra- dation, and the lateral-directional rotary derivatives were affected							
	the most by time s	hifts in any varia	ble.	ire airected			
			y				
17.	Key Words (Suggested by Author(s))		18. Distribution Statement				
	Time-shifted data						
	Stability and control derivatives		Uncla	assified - Unlimite	ed		
	Parameter estimation						
				27 1	00		
				Categor	?y: 08		
19.	Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*		
	Unclassified	Unclassified		84	\$4.75		

EFFECTS OF TIME-SHIFTED DATA ON FLIGHT-DETERMINED STABILITY AND CONTROL DERIVATIVES

Sandra Thornberry Steers and Kenneth W. Iliff Flight Research Center

INTRODUCTION

The effects of data processing and instrumentation errors on flight-determined stability and control derivatives is an important yet seldom treated subject in aircraft parameter estimation technology. It is desirable to minimize the errors, noise, and uncertainties in any data acquisition system used in flight testing, but this is sometimes impossible because of such program constraints as tight scheduling, lack of funds, or the unavailability of the necessary equipment. In addition, one set of instrumentation must often be used for several flight test objectives, so it cannot be optimized for the determination of stability and control derivatives.

Some studies of the effects of instrumentation errors on the accuracy of derivatives determined from flight test data have been made (refs. 1 and 2); however, these studies did not treat the question of time-shifted data. Time shifts can and often do occur in flight test data. One type of time shift occurs because of the character of the data sampling systems. Although it is usually assumed that all the signals recorded in a pulse code modulation (PCM) system are sampled simultaneously, there is a significant amount of time between the sampling of each signal. If, in addition, some of the signals are sampled at the extremes of the sample interval, a time shift, although less than the sample interval, occurs. This type of shift is particularly pronounced in systems with low sampling rates. Another common cause of time shifting is signal filtering. A properly designed filter results in a smoother signal at the expense of producing some time delay.

It is also possible to encounter an effective time lead in one of the signals in a modern data acquisition system. A time lead can occur if all except one of the signals is filtered. The unfiltered signal then leads the other signals. In addition, if one signal is sampled at the end of a time interval and the rest are sampled at the beginning, the first signal appears to lead the others. Therefore, the effects of time leads as well as those of time lags should be examined.

Advanced parameter estimation techniques (such as that in ref. 3), which are coming into widespread use, involve matching a computed time history with a

flight-measured time history for the same control input. There has been some concern as to how well this approach would work if significant phase or time shifts were present in the flight data.

This report presents the results of determining stability and control derivatives with a maximum likelihood estimation method from flight data that have been time shifted. Data acquired from five aircraft and from both lateral-directional and longitudinal maneuvers are considered.

SYMBOLS

The data in this report are referred to the body system of axes. Physical quantities are presented in the International System of Units (SI) and parenthetically in U.S. Customary Units. Measurements were taken in U.S. Customary Units.

a_n	normal acceleration, g
a _y	lateral acceleration, g
L_p	partial dimensional derivative of roll acceleration with respect to roll rate, rad/sec
L_p	partial dimensional derivative of roll acceleration with respect to yaw rate, rad/sec
$^L \beta$	partial dimensional derivative of roll acceleration with respect to angle of sideslip, ${\rm rad/sec^2}$.
$^{L}\delta_{a}$	partial dimensional derivative of roll acceleration with respect to alleron deflection, ${\tt rad/sec^2}$
$^{L}\delta_{r}$	partial dimensional derivative of roll acceleration with respect to rudder deflection, rad/sec^2
^{M}q	partial dimensional derivative of pitch acceleration with respect to pitch rate, rad/sec
$^{M}\alpha$	partial dimensional derivative of pitch acceleration with respect to angle of attack, ${\rm rad/sec^2}$
${}^{M}\delta_{e}$	partial dimensional derivative of pitch acceleration with respect to elevator deflection, ${\rm rad/sec^2}$
N_p	partial dimensional derivative of yaw acceleration with respect to roll rate, rad/sec
N_r	partial dimensional derivative of yaw acceleration with respect to yaw rate, rad/sec

N_{α}	partial dimensional derivative of normal force divided by mass times velocity with respect to angle of attack, rad/sec
N_{β}	partial dimensional derivative of yaw acceleration with respect to angle of sideslip, ${\rm rad/sec^2}$
$^{N}\delta_{a}$	partial dimensional derivative of yaw acceleration with respect to aileron deflection, ${\rm rad/sec^2}$
$^{N}\delta_{e}$	partial dimensional derivative of normal force divided by mass times velocity with respect to elevator deflection, rad/sec
$^{N}\delta_{r}$	partial dimensional derivative of yaw acceleration with respect to rudder deflection, ${\rm rad/sec^2}$
p	roll rate, deg/sec
\dot{p}	rolling angular acceleration, deg/sec ²
\overline{q}	dynamic pressure, kN/m² (lb/ft²)
q	pitch rate, deg/sec
r	yaw rate, deg/sec
\dot{r}	yawing angular acceleration, deg/sec ²
V	velocity, m/sec (ft/sec)
Y_{β}	partial dimensional derivative of side force divided by mass times velocity with respect to angle of sideslip, rad/sec
α	angle of attack, deg
β	angle of sideslip, deg
δ_a	left aileron deflection minus right aileron deflection, deg
δ_e	elevator deflection, deg
δ_r	rudder deflection, deg
δ_1	reaction control, percent
θ	pitch angle, deg
φ	bank angle, deg

AIRCRAFT AND FLIGHT TEST CONDITIONS

Flight test data from several types of aircraft were analyzed to obtain results that were independent of aircraft configuration. The choice of aircraft was based largely on the availability of the proper dynamic response data for determining stability and control derivatives. The data are from current or recently completed flight test programs at the NASA Flight Research Center.

Data from five aircraft, referred to as aircraft A, B, C, D, and E, were used. Aircraft A was an F-8C fighter with a supercritical wing and is described in reference 4. An F-111A fighter with a variable sweep wing (ref. 5) was aircraft B. The Lockheed JetStar airplane, a low-winged, executive jet transport, was aircraft C (ref. 6). Aircraft D was a conventional F-8C configuration, which has a high, variable incidence wing (ref. 7). The M2-F3 lifting body research vehicle was aircraft E (ref. 8).

Table 1 lists the conditions under which the data for the five aircraft were acquired. All the tests were performed at a nominal load factor of 1g with stability augmentation systems off.

DATA ACQUISITION

All the test aircraft used in the study were instrumented to measure three-axis linear acceleration and angular rates, Euler angles, angle of sideslip, angle of attack, control surface deflections, velocity, and altitude. The data were recorded on a PCM magnetic tape system. The basic sampling rates were 50 samples per second for aircraft A, 20 samples per second for aircraft B, and 200 samples per second for aircraft C, D, and E. The data were processed at various sample rates (table 1).

Before being encoded and recorded by the PCM system, the data were filtered with a passive first-order filter. All known phase shifts due to the instrumentation filters were accounted for.

METHOD OF ANALYSIS

The first step in the method used to assess the effect of time shifting was to obtain baseline values of the derivatives by using a maximum likelihood estimation program and a good set of flight data for each aircraft. Time shifts were then applied to the recorded signal of one response or control variable and a new set of derivatives was obtained. The difference in the derivatives was attributed to the time shift in the signal shifted.

The flight data for each aircraft used in this analysis and the corresponding computed time histories resulting from use of the maximum likelihood estimation method are presented in figures 1 and 2 for the lateral-directional and longitudinal

maneuvers, respectively. The type of input for each maneuver is listed in table 1. The baseline values of the derivatives are presented in table 2.

Maximum Likelihood Estimation Method

The dimensional stability and control derivatives were determined by using the maximum likelihood estimation method described in reference 3. This method is a digital computational technique that determines the best set of coefficients (stability and control derivatives) of the linearized equations of motion in such a way that a weighted integral squared error between flight-measured and computed time histories is minimized. The result is that the computed time history tends to match the flight time history. The signals used in the error minimization for each vehicle are shown in figures 1 and 2. The elements of the weighting matrices for each vehicle (discussed in general in ref. 3) are given in table 3.

By using the Cramèr-Rao bound, the maximum likelihood estimation method also provides an estimate of the degree of confidence that should be placed in the derivatives extracted from flight data. This bound provides an estimate of the lower bound of the covariance of the parameters estimated from a given set of flight data. Reference 3 discusses the Cramèr-Rao bound more fully.

Data Time-Shifting Procedure

Time shifts were made in the positive time direction, corresponding to a time delay or phase lag in that variable, and the negative time direction, corresponding to a time advance or phase lead in that variable. The time-shifted sets of data were then processed with the maximum likelihood estimation program to obtain new estimates of the derivatives for comparison with the baseline values.

The flight response and control variables that were time shifted for the lateral-directional maneuvers were p, β , and either δ_a or δ_r , or both, depending on the type of control input involved. Although δ_r was an input to aircraft D, it was not shifted nor were the values of the rudder derivatives included. For the longitudinal maneuvers, the time-shifted variables were α , q, and δ_e . Each variable was shifted from 1 to 10 time increments, or until the maximum likelihood estimation computer algorithm no longer converged to an answer. The maximum time shift for the various aircraft varied because the sample rates for the aircraft differed.

RESULTS AND DISCUSSION

Effect of Time Shifts on Time History Matches

As expected, the matches between flight and computed time histories that resulted when time-shifted data were used were poor compared with the matches obtained with nonshifted data. Figures 3(a) and 3(b) show the matches that

resulted with time shifts in β of -0.32 second and +0.32 second, respectively, for the lateral-directional time history from aircraft A. These matches should be compared with the match in figure 1(a), which was obtained with nonshifted data. The comparison shows that a time shift in one variable, β in this case, affected the match of all the other response variables. In some flight data, a time shift in β of this magnitude degraded the match so much that the maximum likelihood estimation algorithm diverged and no results could be obtained. It was also observed that the number of iterations required for convergence increased with increasing time shift. Divergence occurred most often when control variables were shifted significantly, especially if the control variable lagged the other signals so that the aircraft appeared to respond before the control input was made. However, in most cases the maximum likelihood estimation program converged to a reasonable, although significantly different, answer even if time delays or advances were substantial.

Effect of Time Shifting on Derivative Estimates

The stability and control derivatives determined for each set of time-shifted data are presented as functions of the time-shift increments for the five lateral-directional maneuvers in figures 4 to 8 and for the two longitudinal maneuvers in figures 9 and 10. The trends that resulted from the time shifts are shown in figure 11. Table 4 lists the derivative estimates plotted in figures 4 to 10.

The percentages of change in the derivatives for a 0.1-second time shift are summarized for the lateral-directional maneuvers in table 5 and for the longitudinal maneuvers in table 6. Changes for a 0.1-second time shift were compared because a time shift of this magnitude is representative of the shifts that exist in poorly specified data acquisition systems. Where data were not calculated for a time shift of exactly 0.1 second, values of the derivatives were interpolated.

Estimates of the derivatives could be obtained by using the maximum likelihood estimation method even when the time shifts in the data were considerable. In addition, when the time-shifted data were plotted as a function of the time-shift increment, well defined trends in the derivatives resulted instead of randomly occurring derivative values. However, the response of the different derivatives to a time shift in one signal varied greatly, and the response of each derivative varied according to the signal being shifted. Some generalizations can be made, because some effects are independent of the type of aircraft or maneuver, although with a sample as small as this one the results cannot be taken as conclusive for all aircraft. It may be concluded that time shifts had a significant effect on the estimates of the derivatives. Therefore, if filters that produce significant time lags must be used, the same filter should be applied to all signals to eliminate different time shifts for different recorded signals.

Lateral-directional derivatives.— The percentage of change in each derivative was computed for a 0.1-second time shift in each signal, using the value of the unshifted derivative as the baseline value. Some of the percentages of change are large because the baseline values are close to zero. The lateral-directional results, which are summarized in table 5 and figure 11(a), indicate that in general the

static derivatives, N_{β} , L_{β} , and Y_{β} , change only a little with shifts in any signal for any aircraft. The principal exceptions are the larger error in L_{β} for aircraft A and D and N_{β} for aircraft D. The percentage of change in L_{δ_a} was small for most shifted signals, and the direction of the change was the same for all the aircraft. For L_{p} , the direction of the changes was consistent among the aircraft, but the large percentage of change indicates that for some aircraft the estimate of this derivative is degraded significantly by even a slight time shift in any of the signals chosen. Significant but less consistent changes are apparent in N_{δ_a} and L_{δ_p} and the rotary derivatives, N_{p} , L_{p} , and N_{p} . For the most part, the effect of time shifting β was less than that of time shifting the other signals, although a large enough shift in β resulted in the divergence of the algorithm.

Table 7, which is readily obtained from table 5, shows how greatly a time shift of 0.1 second in each signal affected the lateral-directional derivatives. The significant changes, based only on the data analyzed, may also be summarized as follows:

- The 0.1-second time shift in roll rate, p, resulted in 10-percent to 25-percent changes in the estimation of L_{β} , L_{δ_r} , N_{δ_a} , and L_{δ_a} and in greater than 25-percent changes in the estimation of N_r , L_r , N_p , and L_p .
- The 0.1-second time shift in sideslip, β , resulted in 10-percent to 25-percent changes in the estimation of N_r , L_r , L_{δ_r} , and N_{δ_a} and in greater than 25-percent changes in the estimation of N_p .
- The 0.1-second time shift in aileron control, δ_a , resulted in 10-percent to 25-percent changes in the estimation of L_{β} , N_{δ_r} , N_{δ_a} , and L_{δ_a} and in greater than 25-percent changes in the estimation of N_r , L_r , N_p , L_p , and L_{δ_r} .
- The 0.1-second time shift in rudder control, δ_r , resulted in 10-percent to 25-percent changes in the estimation of N_{β} and in greater than 25-percent changes in the estimation of N_r , L_r , N_p , L_{δ_r} , and N_{δ_a} .

Longitudinal derivatives.— The effects of a 0.1-second time shift on the longitudinal derivatives are summarized in table 6 and figure 11(b). The percentage of change in M_{α} is consistently small and the direction of change is the same for both aircraft. Less significant changes are apparent in N_{α} , M_{q} , $N_{\delta_{e}}$, and $M_{\delta_{e}}$ (table 6).

For the most part, the effects of shifting α and q were smaller than the effects of time shifting δ_{ρ} .

The longitudinal derivatives extracted in this analysis are listed in table 8 along with an indication of how greatly each was affected by the 0.1-second time shifts. The table is based on table 6. The significant changes in the stability and control derivatives from table 8, based only on the data analyzed, are summarized below.

- A 0.1-second time shift in angle of attack, α , resulted in 10-percent to 25-percent changes in the estimation of M_q and in greater than 25-percent changes in N_{δ_ρ} .
- A 0.1-second time shift in pitch rate, q, resulted in changes of greater than 25 percent in the estimation of $N_{\delta_{\rho}}$.
- A 0.1-second time shift in elevator control, δ_e , resulted in changes of 10 percent to 25 percent in the estimation of M_α and M_{δ_e} and in changes of greater than 25 percent in the estimation of M_q and N_{δ_e} .

It can be concluded from the data for the lateral-directional and longitudinal derivatives that if it is desirable to obtain accurate estimates of the less significant control derivatives (L_{δ_r} , N_{δ_a} , and N_{δ_e}) and the rotary derivatives (N_r , L_r , N_p , L_p , and M_q), time shifts in the response and control variables must be accounted for. The derivatives that have the greatest effect on the aircraft response, like N_{β} and M_{α} , were affected only by the larger control time shifts.

Consideration of Aircraft Characteristic Times

Another way to compare the effects on the derivatives of time shifting is to select a time shift that corresponds to a certain percentage of the aircraft's dominant characteristic time, since the effects of time shifts might be expected to be a function of the characteristic times. The percentages of change in the lateral-directional and longitudinal derivatives that resulted from a time shift equal to approximately 5 percent of the dominant characteristic time of each aircraft are listed in tables 9 and 10, respectively. The characteristic time is the period of the short period mode for the longitudinal derivatives or the Dutch roll mode for the lateral-directional derivatives. The characteristic time of each aircraft is given in table 1.

The results of this type of change, expressed as percentages, are approximately the same for each derivative as the results of a time shift of 0.1 second. Therefore, the effects of time shifting are not necessarily a strong function of the characteristic time of the aircraft.

Uncertainty Levels

To represent the validity of one derivative estimate in relation to another, uncertainty levels can be determined. Uncertainty levels can be calculated at the same time as the derivatives by using Cramer-Rao bounds in the maximum likelihood estimation program. Theoretically, the smaller the uncertainty level, the more reliable the estimate of the derivative.

The vertical lines through the data points in figures 12 to 14 indicate uncertainty levels. (For this study, uncertainty levels are used in a relative sense only and are equal to 10 times the Cramèr-Rao bound, an approximation based on experience.) For the lateral-directional maneuvers, the lines through the center of the point correspond to the uncertainty level for a shift in ρ , those to the left of the point correspond to a shift in β , and those to the right correspond to a shift in δ_{α} and then δ_{ρ} . For the longitudinal maneuvers, the lines through the center of the points correspond to the uncertainty levels for a shift in α , those to the left correspond to a shift in q, and those to the right correspond to a shift in δ_{ρ} . The uncertainty levels for the maneuvers in figures 12, 13, and 14 are listed in tables 11(a), 11(b), and 11(c), respectively.

The trends of the uncertainty levels in figures 12 to 14 are consistent with the theoretical definition of uncertainty level. The uncertainty levels are the smallest for a zero time shift, and as the error (due to time shifting) increases, the size of the uncertainty level increases. Correspondingly, if the derivative is not changed significantly by the time shift, the uncertainty level remains small. The increase in uncertainty level with the decrease in the accuracy of the data provides added confidence in the results of the study.

For the longitudinal maneuvers, the uncertainty levels for each point include or nearly include the value of the zero time-shift point. For the lateral-directional data the uncertainty levels may occasionally have to be several times as great as those plotted to include the zero time-shift point.

CONCLUSIONS

The effects of time shifts in the flight measurements of the signals used to estimate stability and control derivatives were determined by time shifting one signal at a time in the positive and in the negative time direction. The derivatives for the data were extracted by using the maximum likelihood estimation method and analyzed as a function of the time-shift increment. Generalizations about the values of the data per se should not be made because the data base was small, but the following conclusions about the effects of time shifts on the data of this study may be drawn:

(1) Even with a significant time shift in the data, it was possible to obtain stability and control derivatives by using the maximum likelihood estimation method.

- (2) The effect of time shifts on the derivatives produced results that were in consistent rather than random patterns.
- (3) Time shifts degraded the accuracy of the derivative estimation. Shifting the control variables caused the greatest degradation, especially if the control lagged the other signals. Time shifts in angle of attack, angle of sideslip, and pitch rate affected the estimates less than time shifts in other signals. The lateral-directional rotary derivatives were affected more than the other derivatives by time shifts in any variable.

RECOMMENDATIONS

In specifying a data acquisition system for determining stability and control derivatives, any signal processing that causes time shifts, such as filtering or significant sampling delays, should be avoided. If such signal processing is unavoidable, all signals should be time shifted by the same amount.

Flight Research Center National Aeronautics and Space Administration Edwards, Calif., December 19, 1974

REFERENCES

- 1. Sorensen, John A.: Analysis of Instrumentation Error Effects on the Identification Accuracy of Aircraft Parameters. NASA CR-112121, 1972.
- 2. Bryant, Wayne H.; and Hodge, Ward F.: Effects of Flight Instrumentation Errors on the Estimation of Aircraft Stability and Control Derivatives. Parameter Estimation Techniques and Applications in Aircraft Flight Testing, NASA TN D-7647, 1974, pp. 261-280.
- 3. Iliff, Kenneth W.; and Taylor, Lawrence W., Jr.: Determination of Stability Derivatives From Flight Data Using a Newton-Raphson Minimization Technique. NASA TN D-6579, 1972.
- 4. Bartlett, Dennis W.; and Harris, Charles D.: Aerodynamic Characteristics of an NASA Supercritical-Wing Research Airplane Model With and Without Fuselage Area-Rule Additions at Mach 0.25 to 1.00. NASA TM X-2633, 1972.
- 5. Sisk, Thomas R.; Matheny, Neil W.; Kier, David A.; and Manke, John A.: A Preliminary Flying-Qualities Evaluation of a Variable-Sweep Fighter-Type Aircraft. NASA TM X-1583, 1968.
- 6. Clark, Daniel C.; and Kroll, John: General Purpose Airborne Simulator-Conceptual Design Report. NASA CR-544, 1966.
- 7. Kraft, Christopher C., Jr.; McLaughlin, Milton D.; White, Jack A.; and Champine, Robert A.: Flight Measurements of Some of the Flying Qualities and Stability Derivatives of a Supersonic Fighter Airplane. NASA MEMO 10-7-58L, 1958.
- 8. Sim, Alex G.: Flight-Determined Stability and Control Characteristics of the M2-F3 Lifting Body Vehicle. NASA TN D-7511, 1973.

TABLE 1. -TEST CONDITIONS

Aircraft	Mach number	α, deg	V, m/sec (ft/sec)	\overline{q} , kN/m^2 (lb/ft 2)	Characteristic time,¹ sec	Input	Sample rate, sample/ sec
		1	ateral-direct	ional maneuve	rs		·
A (F-8C, supercritical wing)	1.00	2.5	295.66 (970.00)	17.005 (355.00)	2.03	δ _a	25
B (F-111A)	0.87	11.0	280.53 (920.39)	12.272 (256.19)	3.06	δ_r	20
C (JetStar)	0.40	9.7	126.43 (414.80)	3.601 (75.18)	4.32	δ_a	50
D (F-8C)	0.67	5.5	211.56 (694.10)	1.461 (305.10)	2.12	δ_a/δ_r	20
E (M2-F3)	0.66	7.2	197.39 (647.60)	8.114 (169.40)	1.47	$\delta_a/\delta_r/\delta_1$	50
			Longitudina	al maneuvers			
B (F-111A)	0.87	5.5	274.02 (899.00)	14.705 (307.00)	2.45	δ_e	20
C (JetStar)	0.32	9.1	105.15 (344.99)	5.029 (104.99)	3.31	$\delta_{e}^{}$	50

¹The period for the short period mode for longitudinal derivatives or the Dutch roll mode for the lateral-directional derivatives.

TABLE 2.-ZERO TIME-SHIFT DERIVATIVES

				Lie	ateral-directi	Lateral-directional derivatives	ves				
Aircraft	N_{eta} , rad/	L_{eta} , rad/ sec 2	${}^{\gamma}_{eta}, \ {}^{\mathrm{rad}/}_{\mathrm{sec}}$	N, rad/ sec	L_{ν} , rad/sec	$\frac{N}{p}$, rad/sec	L_p , rad/sec	$\frac{N_{\mathcal{S}_{r}}}{r_{r}}$	$L_{\delta_{\mu}}$, rad/	$N_{\delta_{\alpha}}$, rad/	$L_{\mathcal{S}_{\alpha}}$, rad/sec ²
A	7.229	-52.590	-0.193	-0.345	-1.388	0.050	-4.235			-0.362	20.290
В	0.597	-17.940	-0.020	0.005	3.292	-0.011	-0.709	-1.213	2.522	1	1
S	1.121	-5.855	-0.067	-0.207	0.360	-0.101	-1.169	1	-	0.062	2.204
D	5.434	-34.960	-0.176	-0.474	2.485	0.016	-2.667	1		0.850	33.175
E	9.021	-70.910	-0.108	-0.660	2.028	0.035	-0.065	-3.059	6.381	0.448	8.584

	${^M}_{\mathcal{E}_{e}}$, rad/	-9.669 -3.995
	${}^{N}\delta_{e}^{}$, ${}^{\mathrm{rad}/}$	$0.012 \\ 0.073$
Longitudinal derivatives	Mq, rad/ sec	-0.913 -1.020
Longitudina	$M_{lpha}, \ { m rad}/\ { m sec}^2$	-6.597 -3.579
	N_{α} , rad/	0.503 0.874
	Aircraft	В

TABLE 3.—ELEMENTS OF WEIGHTING MATRICES USED IN THE ERROR MINIMIZATION FOR AIRCRAFT A, B, C, D, AND E

Weighting	<u>.</u>			Aircraft	· · · · · · · · · · · · · · · · · · ·	
matrices	Signal	A	В	С	D	E
	ŕ	0	0	0	0	30
	į	0	0	0	0	40
Lateral- directional	$a_{\mathbf{y}}$	20,000	100,000	19,100	13,040	16,000
	φ	9,750	31,500	86,100	5,864	6,000
	r	280,000	480,000	1,410,000	292,900	120,000
	р	11,500	11,500	66,300	7,475	3,000
	β	2,000,000	250,000	450,000	397,100	800,000
	^a n		3,500	6,300		
	θ		1,100,000	2,000,000		
	q		130,000	364,000		
	α		1,000,000	570,000		

TABLE 4. - DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA

(a) Aircraft A, 0.04 second per sample time increment, δ_a maneuver

	7 40 50 10 10 10 10 41 41 41 41 41 41 41 41 41 41 41 41 41
$L_{\delta_a}^{},$ rad/sec 2	せんしい しょうしょう しょうこうこう しょうしょう しょうこうこう しょうしょう しょうしょう ちゅうしゅう しゅうしゅう しゅうしょく しゅうしょく しゅうしょく しゅうしょく しゅうしょく しゅうしょく しゅうしゅう しゅう
N_{δ_a} , trad/sec ² t	THE THE THE TENT OF THE TENT O
L_p , rad/sec	ロサイトの中のアンターでは、またでは、これをよっていません。 できょうしょう でんしょう できょう でんしょう でんしょう でんしょう でんしょう でんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
$\frac{N_p}{p}$, rad/sec	OFFICE OF
L_r , rad/sec	I I I I I I I I I I I I I I I I I I I
N_r , rad/sec	ANA CORFIGNITION CONTRACTOR AND TARREST AND
γ_{eta} , rad/sec	$\begin{array}{c} +4444400000000000000000000000000000000$
L_{eta} , rad/sec ²	I COURT OF THE PROPERTY OF THE
N_{β} , rad/sec ²	は中のようなできます。 お中のようなできます。 ではまなるできないなってでいるでものであるなどでは ではまなっています。 でしまないないないないできませる。 のとくとくとしているなのなくととしています。
Shifted variable	HITTHITHITHITHITHITHITHITHITHITHITHITHIT
Time-shift increments (†)	

†+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shiff.

TABLE 4.-DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA - Continued

(b) Aircraft B, 0.05 second per sample time increment, δ_{r} maneuver

L_{δ_r} , rad/sec ²	α . \forall
$^{N_{\delta_{r}}}$, rad/sec 2	
L_p , rad/sec	THE THE TOTAL TH
N_p , rad/sec	
L_r , rad/sec	ADDITION TO THE TEACH OF THE TE
N_{r} , rad/sec	AND MERCEN SERVICE SER
γ_{eta} , rad/sec	11111111111111111111111111111111111111
L_{eta} , rad/sec ² :	
$^{N_{eta}}$, rad/sec ²	ALTONOMORA TAMORANAMANAMANAMANAMANAMANAMANAMANAMANAMANA
	0.000,000,000,000,000,000,000,000,000,0
Shifted variable	00000000000000000000000000000000000000
Sh	0.00 A A A A A A A A A A A A A A A A A A
Tine-shift increments (†)	のためらますのでもはいいです。 では、そのですられるでは、

†+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 4.-DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA - Continued

(c) Aircraft C, 0.02 second per sample time increment, $\delta_{\rm a}$ maneuver

α, sec	CAUNDANANDALTHIALANANDANANDANANDANAHAHANANDANANANDANAND
c ² rac	ALLE COMMUNICATION CONTRACTION
$\frac{L_p}{\operatorname{rad/sec}}$	
$\frac{N_p}{rad/sec}$	
$L_{ m r}$, rad/sec	AUDUNATURANT AUDUNATURAT EARMANNATURA AUDUNATA CARTANDA AUDUNATURANDA AUDUNATORANDA AU
N_r , rad/sec	の PAC PACE PACE PACE PACE PACE PACE PACE
γ_{eta} , rad/sec	
L_{eta} , rad/sec 2	COMPLETE TRANSMINATE FEATURE TO THE TRANSMINA TO THE PROPERTY OF THE TRANSMINA TO THE PROPERTY OF THE TRANSMINA TO THE PROPERTY OF THE TRANSMINA TO THE TRANSMI
$^{N_{eta}}$ rad/sec 2	THE
variable	THE
Shifted	PAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPA
Time-shift increments (†)	

[†]+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 4. - DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA - Continued

(d) Aircraft D, 0.05 second per sample time increment, δ_{α} and δ_{r} maneuver

increments (†)	Shifted variable	$^{N_{eta}}$, rad/sec	L_{eta} , rad/sec 2	r_{eta}^{γ} , rad/sec	N_r , rad/sec	L_r , rad/sec	$\frac{N_p}{p}$, rad/sec	L_p , rad/sec ;	N_{δ_a} , :	$L_{\delta_{lpha}}$, rad/sec ²
	-	5.434	-34.960:	1761	4748	2 - 485 8	1168	-2.6671	855	33.17
** **	ROLL RATE	100 100 100 100 100 100 100 100 100 100	-59.3401	157	361	140 140	007	100	111	900
•••		141	144 . 58 8 .	100	1 00 00 00 00 00 00 00 00 00 00 00 00 00	2.667) (0) (0) (0)	-3.830:	1.004.	35.00
•• ••		5.514	-39.248	171:	- 446	2.3841		-3.191:	3887	35.78
•••		5.215	-29.403	1961	- 605	2.225	100	-1.9251	758	28.47
·· ··	,	70.15	127.696	1888	1 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	9 4 9 6 9 6	-1.655	788	26.18
		5.027	-23.7631	191:	- 696	2.241	900	-1.1378	857	22.111
~ •		1.966.	-21.7101	1941	- 722 *	1.000		- 914:	992	801
•••	SIDE SIDE	5.500:	-37.280:	189:	522	2.241	1000	-2.640:	8718	32.75
		5.458	-36.569:	1.185	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.249		-2.645	892	32.69
•••	SOL SIDE	5.418:	-35.765	- 1791	5000	2.367	000	-2.657		32.66
•••			135.483	-178:	9004	2 345	## ## ## ##	-2.6751	366	32.79
• ••	OF STORY	5.471	-35.324	175	1 2 3 2 2	2.647	0M	20.732	• (/) • · · · · · · · · · · · · · · · · · ·	33.44
••	E OF SIDE	5.519:	-35,309:	175:	502	2.859	030	-2.7361	649	33.05
٠. ٠.	OIV UC		-35.877	- 175	1	3.057	. 036	-2.772:	.577	34.24
٠.٠	THE POST	מונים	-24.773:	177	1270	200	200 200 200	-0.07	110	24.0
•••	SON OFFEE	5.412	-26.4831	- 1781	561	5.105	000	-1.673:	6,000	100
٠	SON DEFLE	5,398	-29.045	177:	- 528	4.456		-1.983:	7311	28.19
rt	11111111111111111111111111111111111111	מייי בירט	130.352	177	1.512	3.656	131	-2.296	7358	30 34
•••	SON DEFLE	5.1691	-46.143:	173:	- 53.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00	-1.834:	1	200	1.1778	100
···	SON SERVICE	4.797	-57.512	172:	E34 t	-6.019:	1649	-5.267	1.553	48.36
+ ••	10 NO	7 C	-123.131.	1 7 7 1	1.000	100 V 0 1-	132	-7.769:	2.191	65,65

⁺ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 4. - DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA - Continued

(e) Aircraff E, 0.02 second per sample time increment, δ_{a} and δ_{r} maneuver

ec2	□ であわらとざらん サミック・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・
L_{δ_a} , ad/sec	$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
ra	
~ ₀	************************************
$\frac{N_{\delta_a}}{rad/sec^2}$	••••••ผู้ผลสลุกทุลสลุสุดทุลสุลสุดทุ
N 'ad,	
!	
, ⁷ 9	######################################
L_{δ_r} , rad/sec	เกรนอาจตาจกับแพวจออกหะพบบออจจ
ra	' '
87	
sec	LEURONDAUMENDAUMENDAUMENDAUMENT IN THE TOTAL TOT
$\frac{N_{\delta_r}}{r}$	
H	
: »	
L_p , rad/sec	[
rac	
1	ທ້ອງປຽວທ້ອງເສົ້ນໃນປີລອອດຕົ້ນໃນອອນເກເນ
), sec	I I I I I I I I I I I I I I I I I I I
$_{p}^{N_{p}},$ rad/sec	
4	
9	AGMENT TRANSPERSE TO THE THE TRANSPERSE TO THE T
L_r , rad/sec	
I	William Handida Handid
i ,	このもとはなっているとしているとしているととなっているととなっているとしているとしているとしているとしているとしているとしなっているというというというというというというというというというというというといい
N_r , rad/sec	र राम्ब्ल्सासारा सार्वासार हो।
, a	' '
β, /sec	8080-0834 1080-0000000000000000000000000000000000
γ _β , rad/sec	!
;	
208	T COCCECCECCECCECCECCECCECCECECECECECECEC
L_{eta} , rad/sec	
rad	1111111111111111111111111
	HH&AUJOHPOOPTOOPTOOPTOOPTOOPTOOPTOOPTO
νβ, 1/sec	これでのもとやものもれるとものできることものとともでしているというというというというというというというというというというというというというと
Ng /g	ϕ
E C	
	ZZZZZ
! •	I SZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
- [Q	
arie	
Q .	
ifte	L ANAMARIO COCOCO COCOCOCOCOCOCOCOCOCOCOCOCOCOCO
Sh	
	10000000000000000000000000000000000000
ft ts	
shi nen	∴มดบสสดบเกษสอบเกษสอบเกษสอบเกษ
Time-shift increments (†)	
]

[†] corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

(f) Aircraft B, 0.05 second per sample time increment, \hat{b}_{e} maneuver

0000/r0000/040/4004/1	•
000000000000000000000000000000000000	
UCDODODODODODODO HANDODANAMAN HANDANAMANAMANAN HANDANAMANAMANAN HANDANAMANAMANANANANANANANANANANANANANANA	
######################################	
๛ฅ๛ฅ๛ฅ๛ฅ๛ฅ๛ฅ๛ฅ๛ฅ ๛๛๚๛๛๛๛๚๛๛ฅ๛๛ ๛๛๚๛๛๚๛๛๚๛๛ฅ ๛๛๚๛๛๚๛๛ฅ๛ฅ๛ฅ๛ฅ	
• • • • • • • • • • • • • • • • • • •	
□ + + + + + + + + + + + + + + + + + +	
	AAANGGC AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[†]+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 4.-DERIVATIVES DETERMINED WITH TIME-SHIFTED DATA - Concluded

(g) Aircraft C, 0.02 second per sample time interval, $\boldsymbol{\delta}_{\varrho}$ maneuver

Time-shift increments (†)	Shifted variable	N _α , rad/sec	M_{α} , rad/sec ²	$^{M}_{q}$, rad/sec	$^{N}_{\delta_{e}}$, rad/sec	M_{δ_e} , rad/sec ²
1++++++++++++++++++++++++++++++++		4873594334794747339087364433455668124669445808609735 766411203456891247910986547041698657597632198649735 88888888999999990990988888888888888877699999886888	99773618818181818181818181818181818181818181	-1.0484066221137516662211375166622113751666221137516662211375176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317517673175176731751767317673	737284228177963164197647177816.19969787816.19999878779665544137547177816.1996979787807655471778816.1996877778076554200000000000000000000000000000000000	

 $^{^\}dagger\text{+}$ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 5.—PERCENTAGE OF CHANGE IN LATERAL-DIRECTIONAL DERIVATIVES FOR 0.1–SECOND TIME SHIFT

:: : :	Time-shifted variables							
	: Time lag :					Time	lead	
Air- craft	р			δ_r		β	δ_a	δ_r
				^N β				
A B C D	.83 	2.501 2.681 1.841	-7.93: .89: -5.53: -5.28:	15.00	0.000 2.76	-3.33: -2.68:	2.76: 89: 0.30: 7.78:	-15.83 -2.22
				$^{L}_{eta}$				
A B C D E	1.41	-1.97: -1.71: 0.00:	-14.95: -35.00:	-1.971	-2.544 -11.974 -26.43	0.00:	21.90: 11.11: 18.57: 0.30:	-2.54 2.82
				$^{Y}\beta$				
A B C D E	-1.28 -4.48	-1.74: 14.18: 0.00:	1.49 .081 1.85	1.281	4.858 1.998	. 721	-1.30: 6.00: 14: -3.24:	72 -2.78
				^{N}r			* * * * * * * * * * * * * * *	
A 3 C D E	-7.25: -206.40: -33.33: -22.22: -123.08:	-17.39: 1200.00: -7.38: 51: 23.07:	42.75: -2.38: -7.ú7: 34.62:	-2600.00 :	16.161	-1200.00 11.43:	-36.23: -23.81: -7.97: -42.31:	800.00 53.84
				L_r				
A B C D E	-27.48: 1(2.78:	-6.11: 36.11:	460.71: -250.00: -173.47: 0.00:	48.85 193.36	24.43 -138.89 10.20	-125.00: 6.11: -36.11: -2.04: 0.00:	-135.71: 205.56: 81.63: -35.00:-	-54.25

TABLE 5.—PERCENTAGE OF CHANGE IN LATERAL-DIRECTIONAL DERIVATIVES FOR 0.1-SECOND TIME SHIFT - Concluded

\$!		Time-	shifted variables		
: : :	:	Time lag	sificed variables	Time lead	
Air- craft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	β δ_a	δ_r p	β δ_a	δ_r
: : :			N _p	<u></u>	
: Ď	991 -48.631	-48.00	-20.93: -51.16 : -9.85 : -40.63	27.91: 0.00: -9.36: -46.88: -28.13:	9.30
		••••••	$^{L}_{p}$		
A B C D	38.82: 4.93: 24.79: 28.70: 1560:00:	-2.35:-125.88: -4.93: -1.71: -41.88: -1.85: -50.00: -66.67:-750.00:	3.52: -4.58 : -31.62	3.52: 1.00: 46.15: 1.85: 26.85:	0.00 541.67
			$^{N}\delta_{r}$		
A B C D	39	-1.65	6.00 .41		3.31
	: -14.75: 	6.551 14.751	-19.67!82 L8	1.641 -11.481	5.73
A B C D	13.23	-3.96	-37.62 -26.73		21.78
E	: -49.218	11.11: 47.61:	-134.921 -1.59 Nδ _a	1 -36.511 -42.861	-1. 59
3 C	15.97 -17.60 -12.35 -111.11	22.22: -8J.56: -7.60: 22.4J: -17.06: 39.41: 44.44: 24.44:	:	7.201 -6.401 2.941 -16.471 -40.001 17.781	24.44
			L 8 $_{a}$		
_	-29.63 -10.91 -14.39 -29.93	.69: 92.59 .91: 17.27 1.52: 21.21: -1.16: -9.30:	: 12.73 15.91	0.00: -12.73: -1.52: -15.15:	3.49

TABLE 6.—PERCENTAGE OF CHANGE IN LONGITUDINAL DERIVATIVES FOR 0.1-SECOND TIME SHIFT

			Time	-shifted va	ariables		
		Ti	me lag		 :	Time lead	
Air- craft	α	:		δ_e	α	q	δ_e
				$^{N}{}_{lpha}$			
B C	-3.9 8.0		1.981 -5.15	-4.95 -7.45			4.95 7.45
				$^{M}{}_{lpha}$			
8 C	3.0 0.0		3.03 2.80	-15.15 -14.69	-3.03 -1.05		10.23 9.48
				^{M}q			
B C	.5 27.4	5 :	10.99 -1.96	-9.34 -41.18	55 -27.45	-4.671 3.921	18.68 35.78
				N $_{e}$			
8 C	150.û -22.6	ί: - ij: -	83.33 31.51	-641.67 -43.15	125.00 21.92	91.67: 30.14:	275.00 -12.33
		· · · · - ·		M 8 $_{e}$			
8 : C :	4.6 1[.6		5.67 1.88	.52 -18.57	-2.06 -8.79		2.06 16.33

TABLE 7.—EFFECT OF 0.1-SECOND TIME SHIFTS ON LATERAL-DIRECTIONAL DERIVATIVES

Derivatives	Signa	als resulting in change in derive	ative of -
Derivatives	Less than 10 percent	10 percent to 25 percent	Greater than 25 percent
Static -			
$^{N}{}_{eta}$	p, β, δ _a	δ_{r}	
$^L{}_eta$	β, δ _r	p , δ_a	
Y_{β}	p, β, δ _a , δ _r		
Rotary –			
N_{r}		β	p , δ_r , δ_a
L_r		β	p, δ _r , δ _a
$^{N}_{p}$			p, β, δ _a , δ _r
L _p	β, δ _r		p, δ_a
Control —			
$^{N}\delta_{r}$	p, β, δ _r	δ_a	
$^L\delta_{r}$		р, β	δ_a , δ_r
$^{N}\delta_{a}$		p, β, δ _a	δ_{r}
L δ_a	β, δ _r	p, δ _a	

TABLE 8.—EFFECT OF 0.1-SECOND TIME SHIFTS ON LONGITUDINAL DERIVATIVES

Derivatives	Signa	Signals resulting in change in derivative of –									
Derrutives	Less than 10 percent	10 percent to 25 percent	ercent Greater than 25 percent								
Static –											
N_{α}	α , q , δ_e										
$^{M}\alpha$	α , q	$^{\delta}_{e}$									
Rotary –											
^{M}q	q	α	$^{\delta}e$								
Control –											
$^{N}\delta_{e}$			α, q. δ _e								
$^{M}\delta_{e}$	α, q	$^{\delta}_{e}$									

TABLE 9.—PERCENTAGE OF CHANGE IN LATERAL-DIRECTIONAL DERIVATIVES FOR TIME SHIFT OF 5 PERCENT OF AIRCRAFT CHARACTERISTIC TIME

		Time-	shifted variables		
		Time lag		Time lead	
Air- craft	р	eta δ_a	δ_r , p	β δ_a	δ_r
			N _β		
8 C D		2.76: -7.93: 3.36: 7.21: -1.83: 1.84: -5.53: -4.44: -5.56:	22.69: 4.83 93 2.76	-3.36: -1.80: -1.80	: -24.371
			$^L\beta$		
Ŏ		0.00: -79.05: -4.23: -7.69: -46.17: 0.00: -35.00: 2.82: -7.04:	-4.23: -4.23 : -31.62	1 -1.41: 1.28: 17.95 -1.43: 18.57	• - 5.631
			^Y β		
B	-1.77 72 -8.96 -1.00 -6.48	5.19: .52: -2.15: 29.10: -4.48: 3.00: .08: 1.85: 1.85:	2.561 0.00 8.96 1.00	72! -29.10: -2.99	: -1.28
			N_r		
B	-7.25 -3[0.001 -78.31 -22.22 -96.30	186J.60: -15.66: -61.45:	-4403.00 400.00	1-1600.001 14.46: -61.45 51: -7.07	:3600.000 5:
	• • • • • • • • •		L_{p}		
G C	-92.86: -42.75: 177.78: -6.12: -197.50:	132.14: 460.71: -10.96: -33.33:-877.78: 12.24:-173.47: -5.00: 5.00:	61.07: 36.64 :-400.00 : 10.20	: -2.84: 81.63	: -85.55; :

TABLE 9.—PERCENTAGE OF CHANGE IN LATERAL-DIRECTIONAL DERIVATIVES FOR TIME SHIFT OF 5 PERCENT OF AIRCRAFT CHARACTERISTIC TIME - Concluded

						T	'ime	-sh	ifted	var	iables		 -	
	:		٠.	Time	e la	g				:			T	ime	lead			
Air- craft	:	р	:::::::::::::::::::::::::::::::::::::::	β	:::::::::::::::::::::::::::::::::::::::	δ	1	:	$^{\delta}_{r}$:	p	:	β		{	5 a	; ;	δ_r
									N_p									
A B C D E	:	-27.J0 75.00 -8.91 -40.53 328.57	1	-48.00 -40.91 5.45 43.75 -42.86	: : : : :	146 -40 162 -21	.50 .50 .42	-1	31.8	2:	36.3 -77.2 -33.6 -49.6 -357.1	7:63:4	54 40 -46 -21	09982	- /	8 · 5 4 · 8 8 · 1 1 · 4	•	13.6
									L_p									
A B C D E	:::::::::::::::::::::::::::::::::::::::	38.82 7.54 49.15 28.70 866.67	:::::::::::::::::::::::::::::::::::::::	-2.35 5.63 -3.39 -1.85 -66.67		125 110 -50 400	38	: 8	7.0 66.6	4::7:	-163.5 -7.0 -77.9 -42.5 -766.6	31 41 71 71	233	120053	3 5 2 6 J	8 • 8 4 • 2 5 • 8	4:	0.0
• • • • •									N_{δ_r}									
A B C D E		-1.65	:	-1.65	:			 : :		3:	8.	:		65			:	4.9
		-11.47		4.92		100	66		L_{δ_r}		. 8		1.	641		9.0		6.5
Ĉ D		18.81	:	59	:			:	63.3	:	-56.4	:		03			:	
	: 	-36.51		9.52		34	92		N_{δ_a}		3.1		-25.	4 6 8	-3.	5 • 5	31	4.7
B	:::::::::::::::::::::::::::::::::::::::	15.97 -29.40 -12.35 -37.78	•	22.22 -21.60 -17.63 17.78	1	58 39 10	56 40 41	1	17.7	8:	-22.9 68.0 13.5 33.3	:	-25. 6. 2.	69: 40: 94:	-16	5.0	G: 7:	12.2
									$^{L}\delta_{a}$									
8 C 0	:	-29.63 -20.91 -14.39 -16.27	: !	.69 1.82 1.52 -1.16	2		59 91 21 81	•	 -9.3		98.77 26.36 15.93	•	-1. -1. -1.		- 22	.7	•	2.3

TABLE 10.—PERCENTAGE OF CHANGE IN LONGITUDINAL DERIVATIVES FOR TIME SHIFT OF 5 PERCENT OF AIRCRAFT CHARACTERISTIC TIME

			Time-	shifted v	ariabl	les		
		Ti	me lag		:	T	'ime lead	
Air- craft	α	:	q	$^{\delta}_{e}$:	α	q	$^{\delta}_{e}$
				N_{α}				
B :	-4.j 14.2			-5.0 -13.7		6.30: 8.00:	-4.50: 10.29:	4.90 12.00
				$^{M}\alpha$				3
8 : C :	4.1			-17.4 -28.6	2: - 7: -	4.55:	-4.551 -5.591	12.12 12.87
				^{M}q				:
B :	41.0	n: 9:	14.84	-10.4 -57.9	4 ! 2 ! - 4	1.58:	-4.951 3.711	25.27 58.91
				N $_{e}$:
B C	-183.3 -35.6	3:-1	00.00 60.27	-95.8	9: 3	0.06: 4.25:	116.67: 47.94:	191.67 -57.53
				$^{M}\delta_{e}$:
B :	5.1 19.5	5:	7.47 1.89	2.5 -30.8	8: -1 2: -1	2.32:	6.191 1.261	20.10 27.04

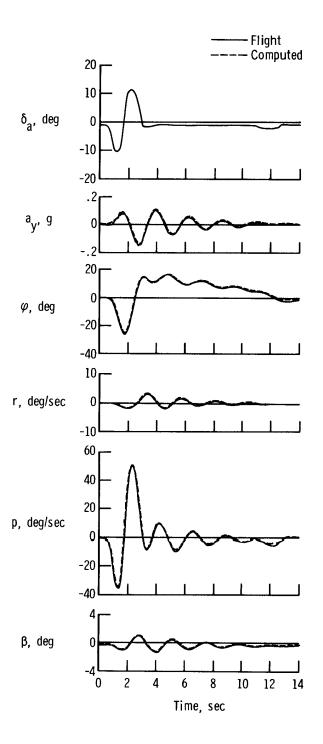
TABLE 11.-CONFIDENCE LEVELS FOR TIME-SHIFTED CASES

(a) Aircraft E, 0.02 second per sample time increment, $\delta_{\bf q}$ and $\delta_{\bf r}$ maneuver

22	THE BAYOR TO BE BOUND TO BE
$rac{L_{\delta}}{a},$ rad/sec	044 4444 44 444 444 444 444 444 444 444
N_{δ_a} , ad/sec ²	*************************************
$^{N}_{\delta}$ rad/s	
, ec 2	Lanchundendendendendendendendendendendendenden
L_{δ_r} , rad/sec	 ข้างการการการการการการการการการการการการการก
r, sec	************************************
N_{δ_r} , rad/sec	.
sec	りょうとしょうできます。 からしょうとうしょう とくとしょうしょうしょうしょう しょうしょう しょうしょう しょうしょう にゅうしょう こうしょう こうしょう こうしょう こうしょう しょうしゅう しょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょう しゅうしゅう しゅう
$L_{ m p}$, rad/sec	
sec	5000000000000000000000000000000000000
$\frac{N_p}{rad/sec}$	
sec	TANDER THE THE THE TOTAL T
$\frac{L_r}{\mathrm{rad/sec}}$	<u> </u>
$\frac{N_r}{r}$, rad/sec	
sec	ี อุดอาการการการการการการการการการการการการการ
$^{Y}_{eta}$, rad/sec	
sec 2	
L_{eta} , rad/sec	######################################
$^{V_{eta}}$, $^{1/sec}$	************************************
$^{N}_{eta}$ rad/s	न ननन तन न नन
	NEXEZ SONO DO
iable	1000000HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Shifted variable	
Shifte	POSCOCIONEMINIONE PER PER PER PER PER PER PER PER PER PE
1 1 1 1	AAA WAXAPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
nift nts	,
Time-shift increments (†)	1
i i i	

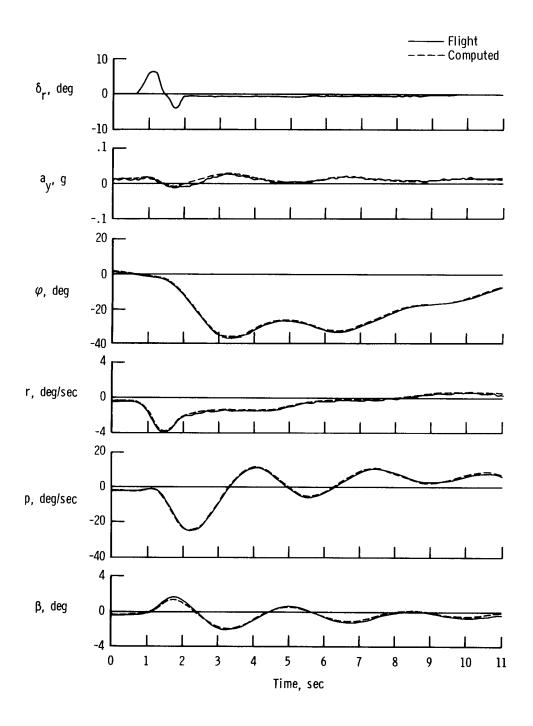
^{†+} corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

(b) Aircraft B, 0.05 second per sample time increment, $\delta_{\rm e}$ maneuver


$^{M}\delta_{e}^{}$, rad/sec	
N_{δ_e} , rad/sec	0
M_{q} , rad/sec	40000000000000000000000000000000000000
M_{α} , rad/sec	A THE RESERVE OF THE STREET OF
N_{α} , rad/sec	04000040000000000000000000000000000000
	 00 00 04 04 90 90 00 00 00 00 00 00 00 00 00 00 00
Shifted variable	### PAPAPA PAPAPA PAPAPAPAPAPAPAPAPAPAPA
Fime-shift : ncrements (†)	1 1 + + + 1 + + + + + + + + +

[†]+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.

TABLE 11.-CONFIDENCE LEVELS FOR TIME-SHIFTED CASES - Concluded


(c) Aircraft C, 0.02 second per sample time increment, $\boldsymbol{\delta}_e$ maneuver

Time-shift increments (†)	Shifted variable	N _α , rad/sec	M _α , rad/sec	^M q', rad∕sec	$^{N}\delta_{e}^{\;$	M $_{e}$, rad/sec
	ANGCACCACACACACACACACACACACACACACACACACA	447-44857828549535680 65027-40088991336820 600911110000111100000 60091111000000 600911110000000000	692574571689779768837746333854691099992538491682571622192534451683333542212999912268257162258889991222233865573385468257119253486999782221598869109997822215988691099978222159886910999782221598869999782221598899998682571099868257109986825710999978222159886924999782225988999986825710998868257109988682571099886825710999978288888888888888888888888888888888	16767555947769675460114414393288895067996368506227471627789913-1111111111111111111111111111111111	60279652163157324C1116C2C72097676284C428876567899144C1116C2C720965284C4308765678991445787656567899876656555555666788997644108765688915799115794	117711772445543140077500793118411818118181818181818181818181818181
†+ corresponds to a time lag, - to a time lead; integer indicates the number of sample time increments of the shift.						

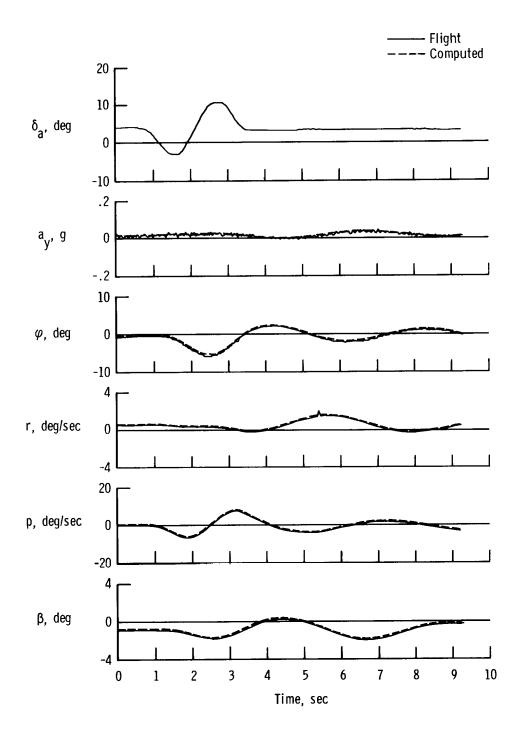

(a) Aircraft A; δ_a pulse.

Figure 1. Typical match between computed and flight time histories for lateral-directional maneuvers with no time shift.

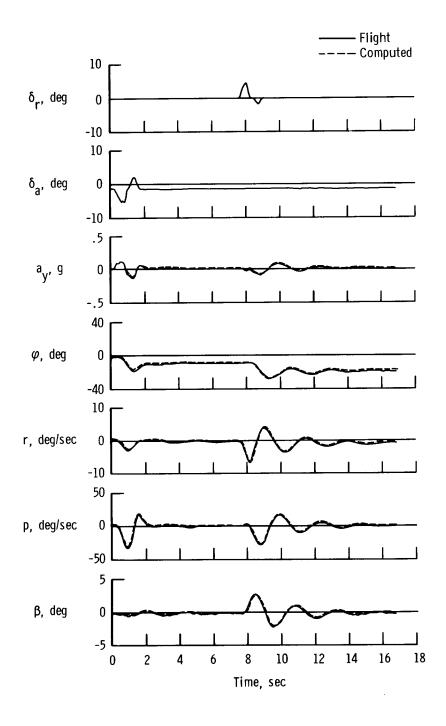

(b) Aircraft B; δ_r pulse.

Figure 1. Continued.

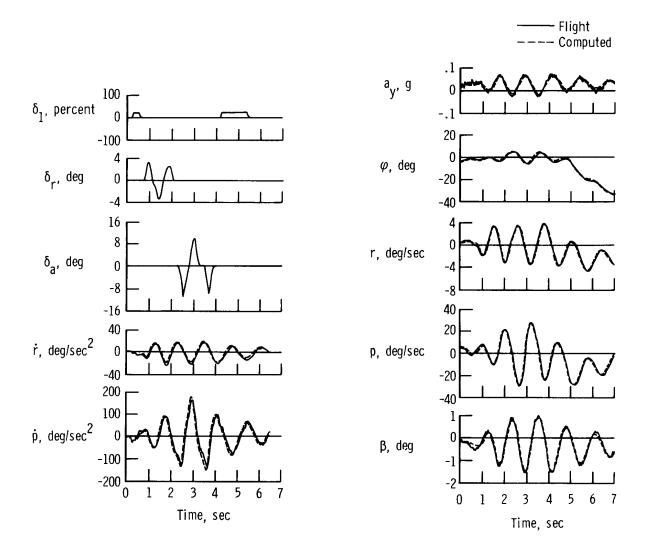

(c) Aircraft C; δ_a pulse.

Figure 1. Continued.

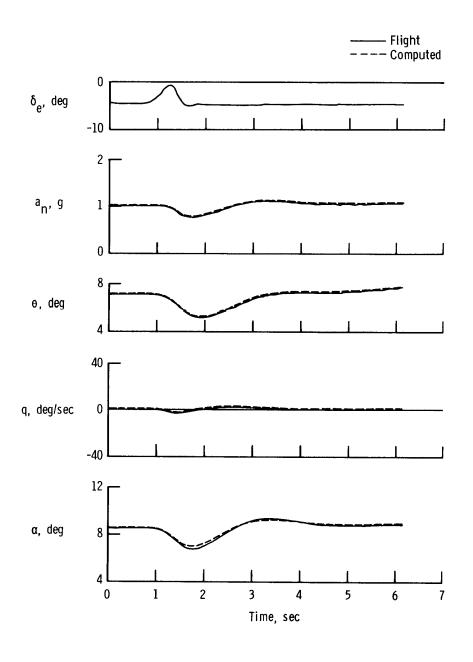

(d) Aircraft D; δ_a and δ_r pulse.

Figure 1. Continued.

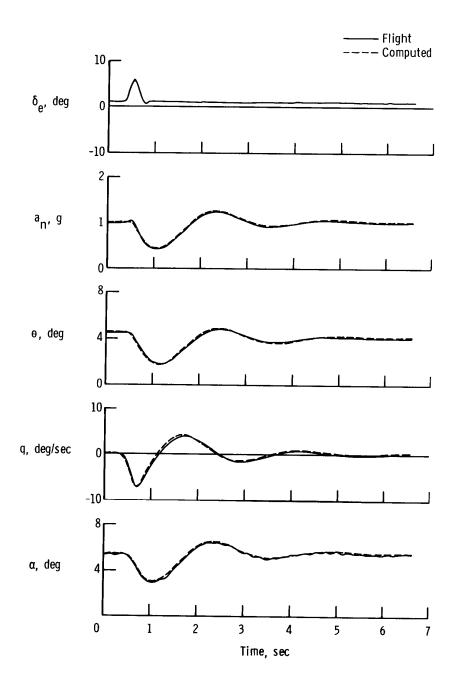

(e) Aircraft E; δ_a and δ_r pulse.

Figure 1. Concluded.

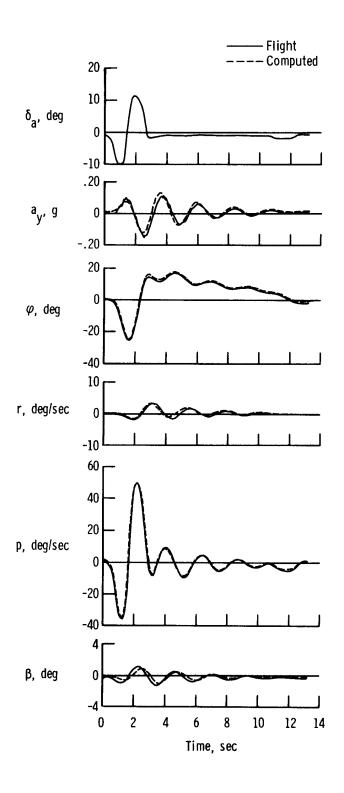

(a) Aircraft B.

Figure 2. Typical match between computed and flight time histories for longitudinal maneuvers with no time shift. $\boldsymbol{\delta}_e$ pulses.

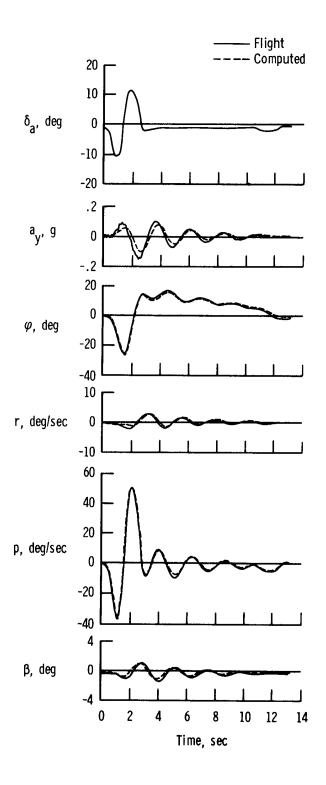

(b) Aircraft C.

Figure 2. Concluded.

(a) Shift = -8 time increments (-0.32 second).

Figure 3. Matches between computed and flight time histories with time shifts in β of -8 and +8 time increments. Aircraft A.

(b) Shift = +8 time increments (+0.32 second).

Figure 3. Concluded.

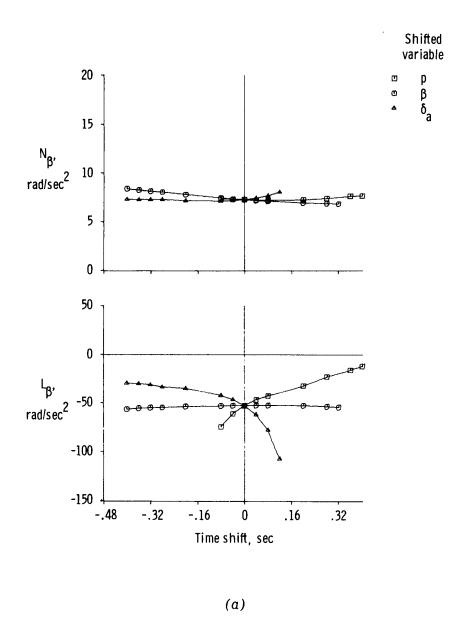


Figure 4. Estimated lateral-directional derivatives as a function of time-shift increment for a δ_{α} maneuver. Aircraft A.

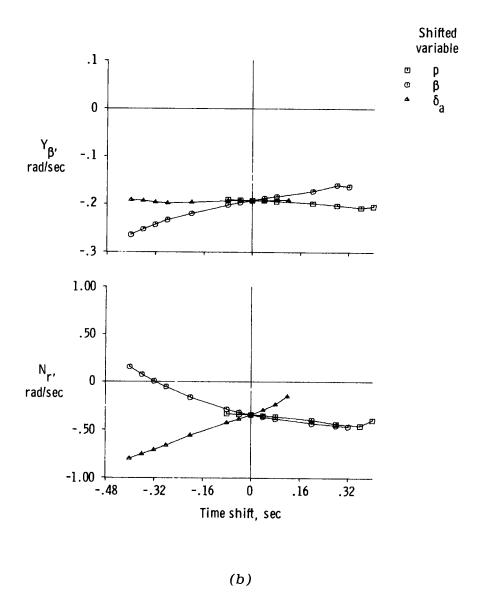


Figure 4. Continued.

40

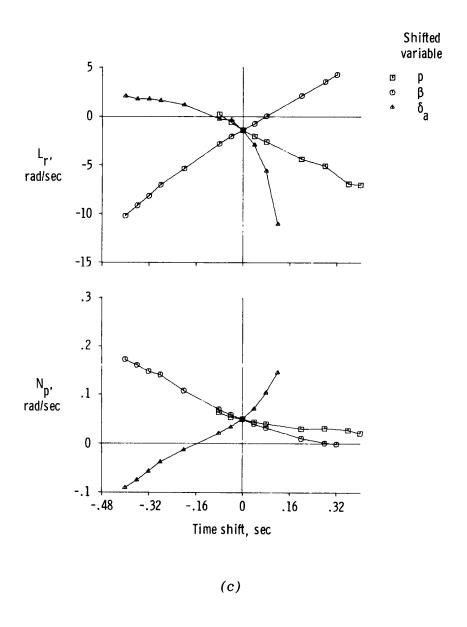


Figure 4. Continued.

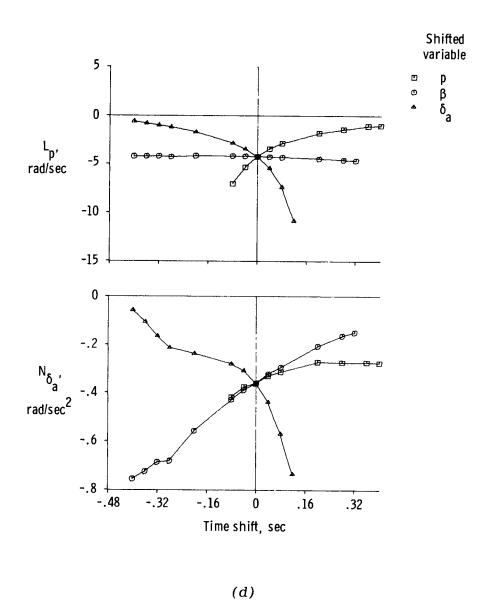


Figure 4. Continued.

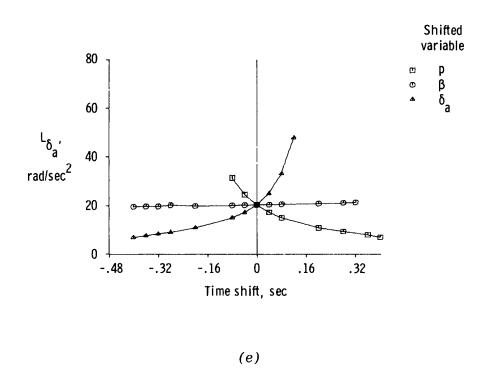


Figure 4. Concluded.

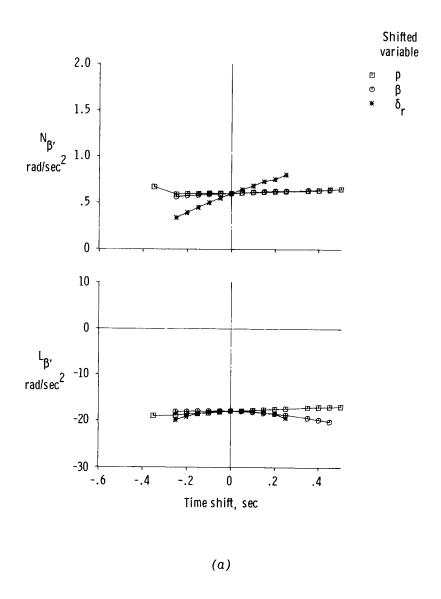


Figure 5. Estimated lateral-directional derivatives as a function of time-shift increment for a $\boldsymbol{\delta}_r$ maneuver. Aircraft B.

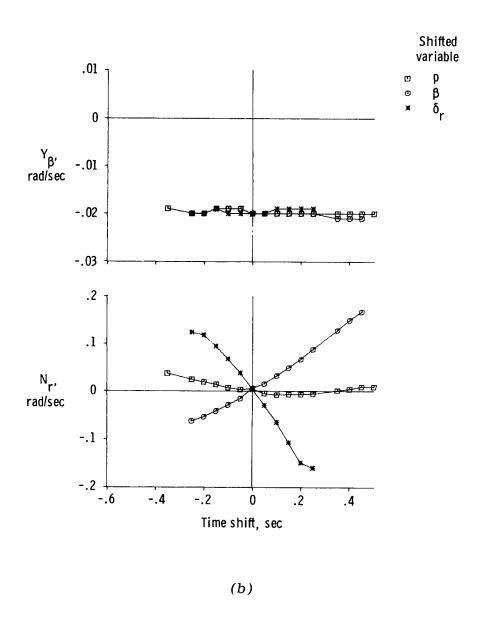


Figure 5. Continued.

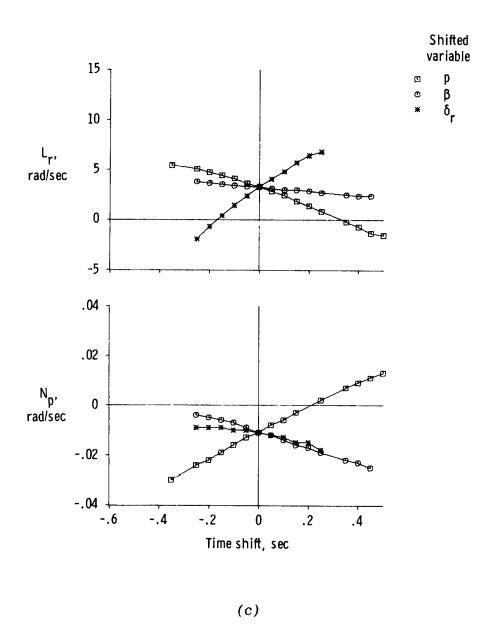


Figure 5. Continued.

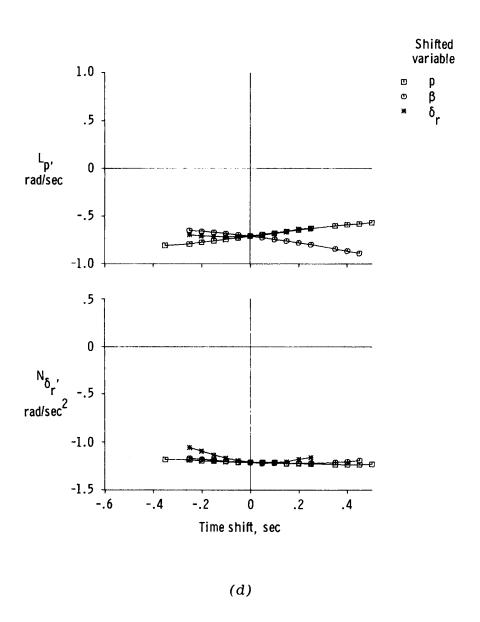


Figure 5. Continued.

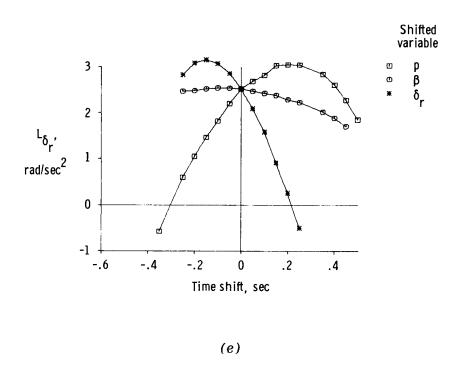


Figure 5. Concluded.



Figure 6. Estimated lateral-directional derivatives as a function of time-shift increment for a $\boldsymbol{\delta}_a$ maneuver. Aircraft C.

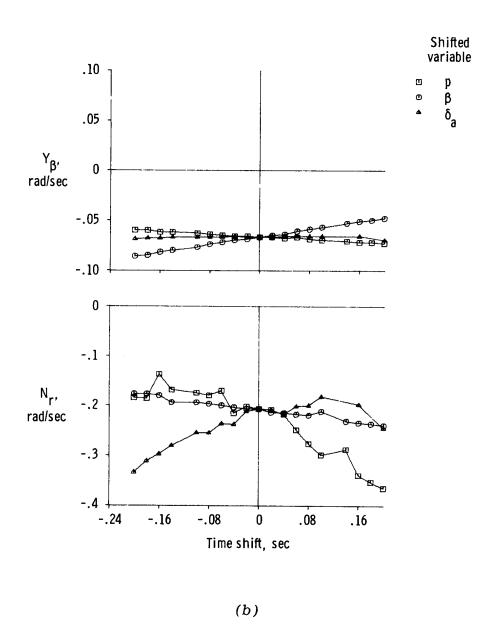


Figure 6. Continued.

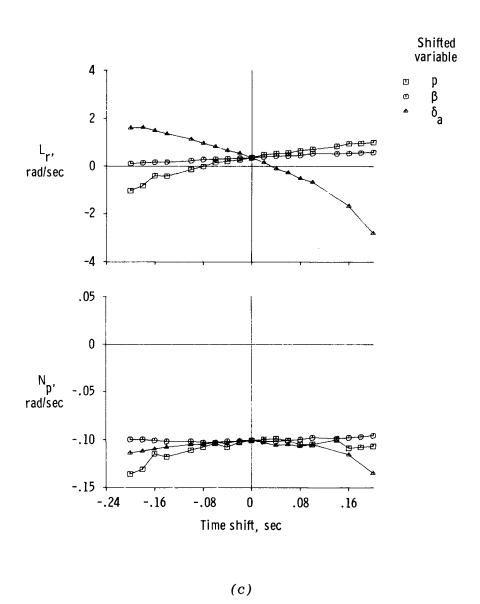


Figure 6. Continued.

Figure 6. Continued.

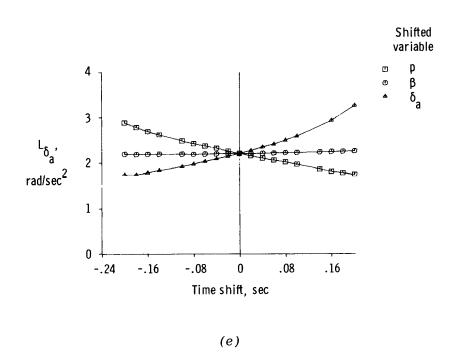


Figure 6. Concluded.

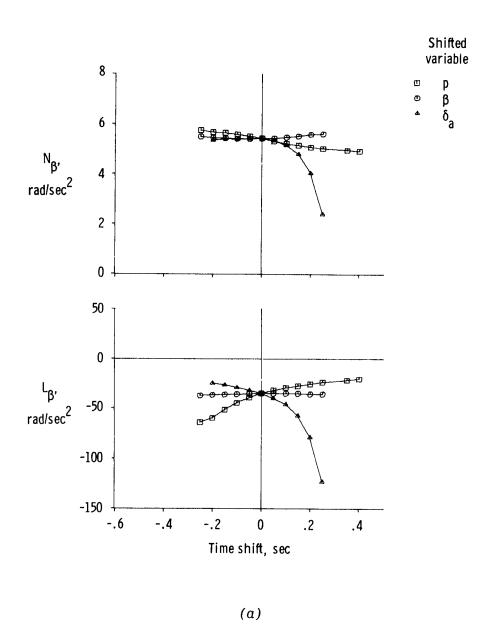


Figure 7. Estimated lateral-directional derivatives as a function of time-shift increment for a δ_a and δ_r maneuver. Aircraft D.

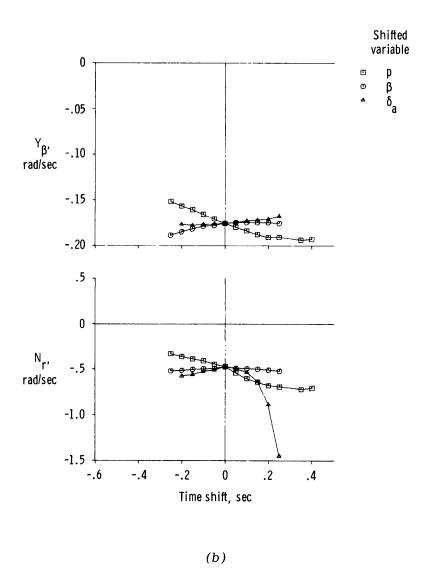


Figure 7. Continued.

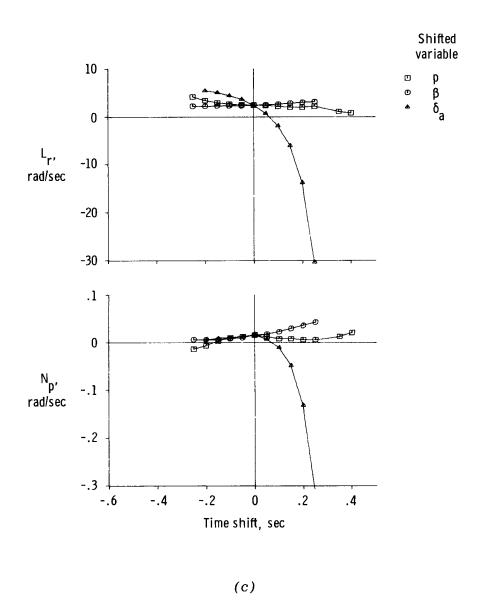


Figure 7. Continued.

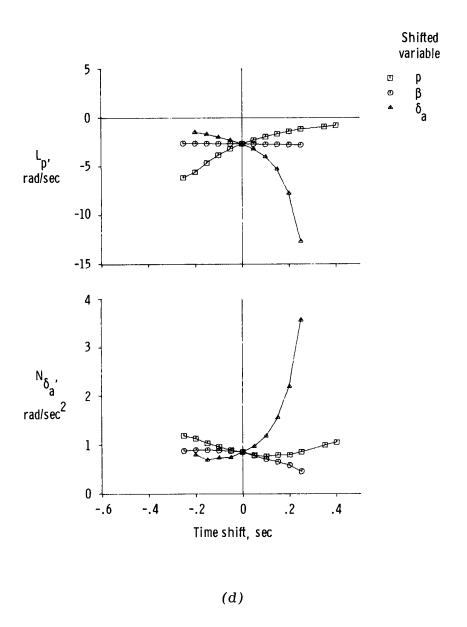


Figure 7. Continued.

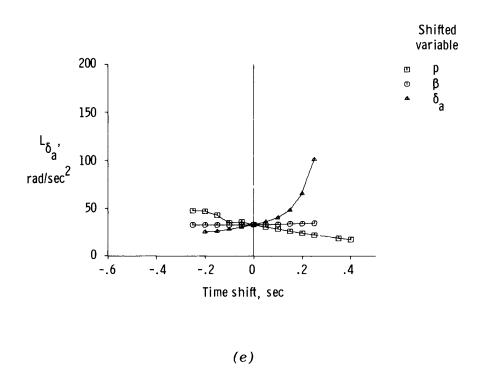


Figure 7. Concluded.

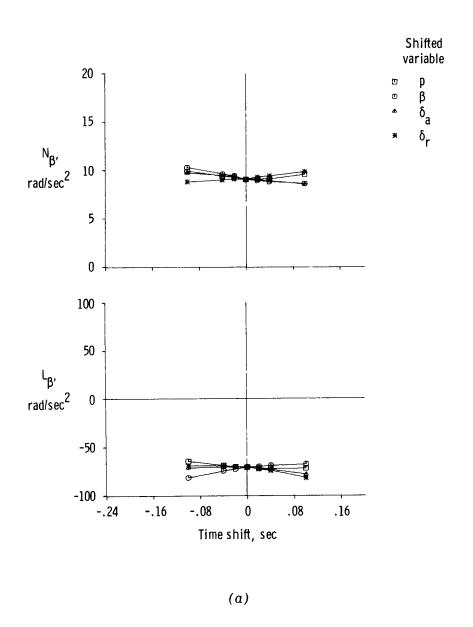


Figure 8. Estimated lateral-directional derivatives as a function of time-shift increment for a δ_a and δ_r maneuver. Aircraft E.

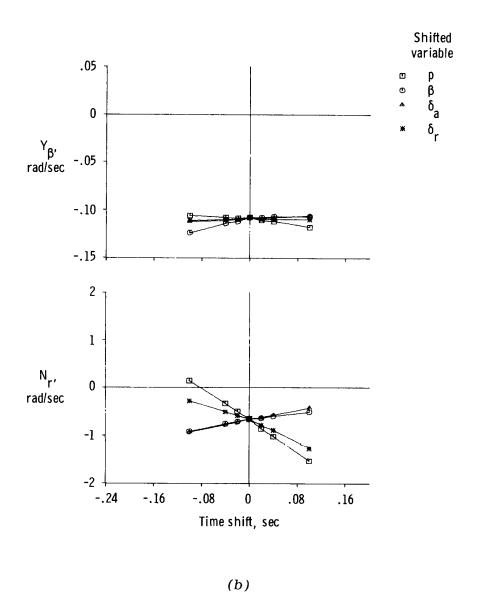


Figure 8. Continued.

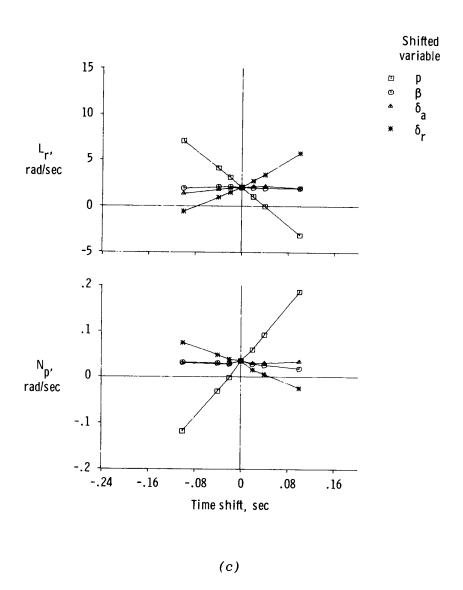


Figure 8. Continued.

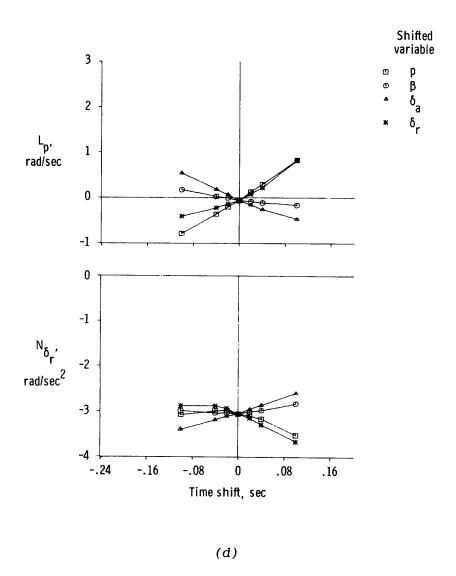


Figure 8. Continued.

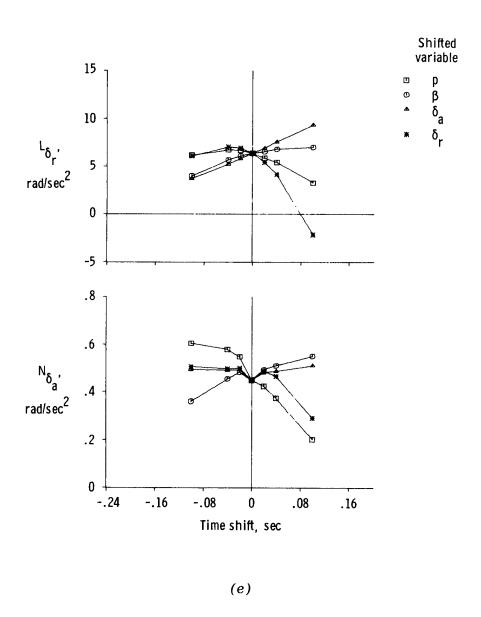


Figure 8. Continued.

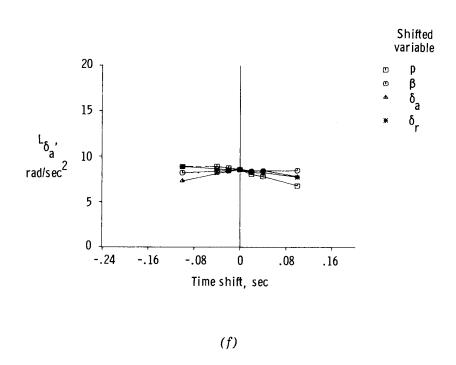


Figure 8. Concluded.

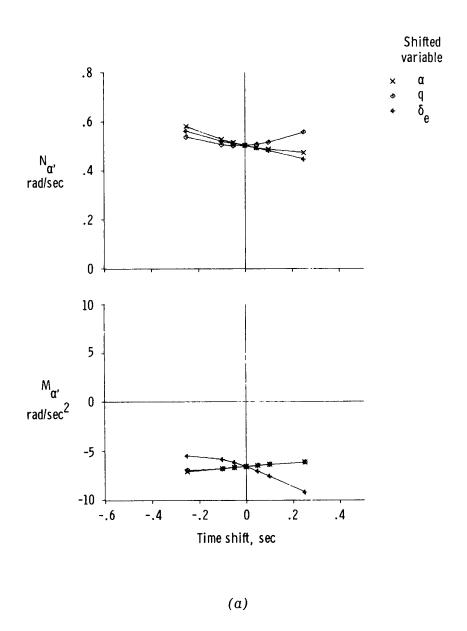


Figure 9. Estimated longitudinal derivatives as a function of time-shift increment for a $\boldsymbol{\delta}_e$ maneuver. Aircraft B.

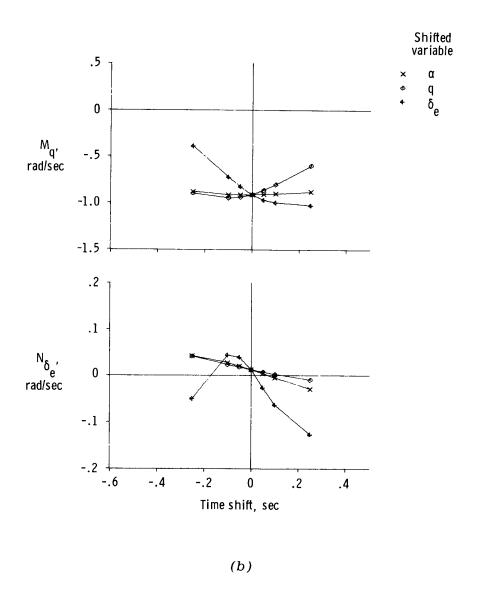


Figure 9. Continued.

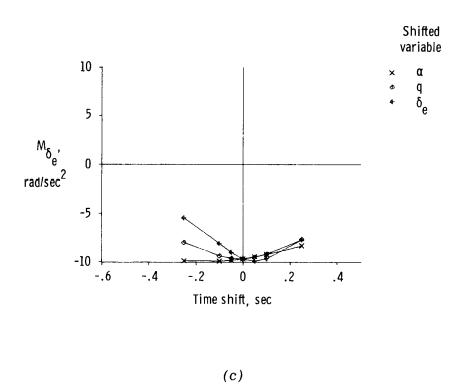


Figure 9. Concluded.

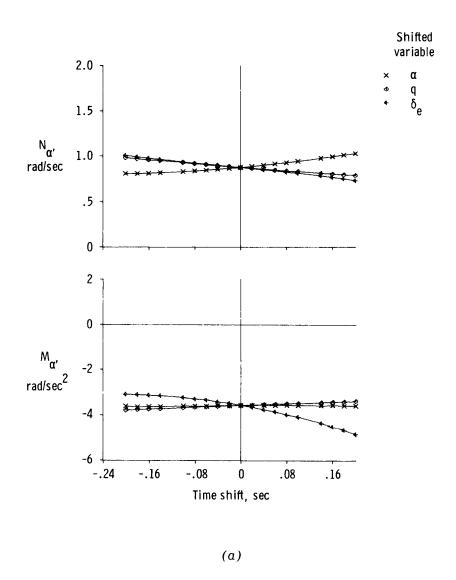


Figure 10. Estimated longitudinal derivatives as a function of time-shift increment for a δ_{ϱ} maneuver. Aircraft C.

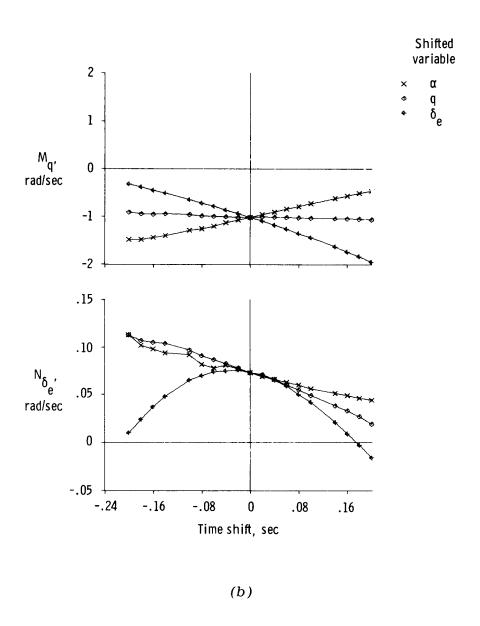


Figure 10. Continued.

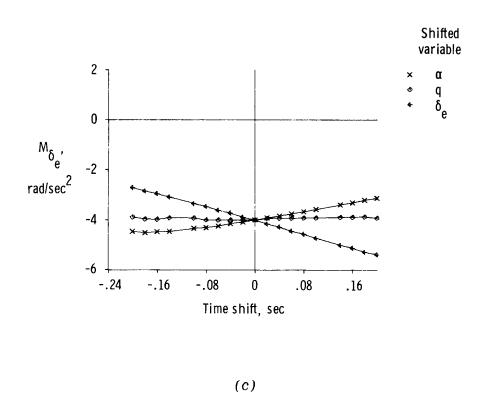
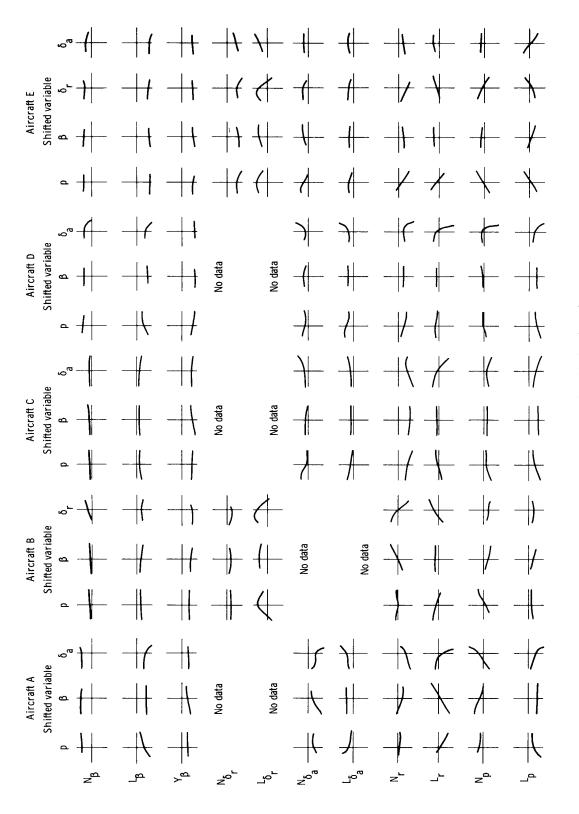
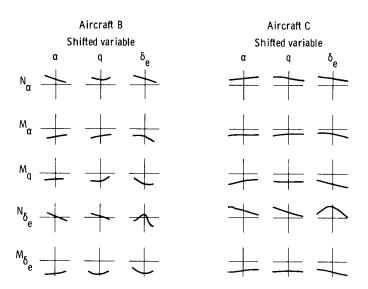




Figure 10. Concluded.

(a) Lateral-directional derivatives.

Figure 11. Trends in derivatives estimated from time-shifted data.

(b) Longitudinal derivatives.

Figure 11. Concluded.

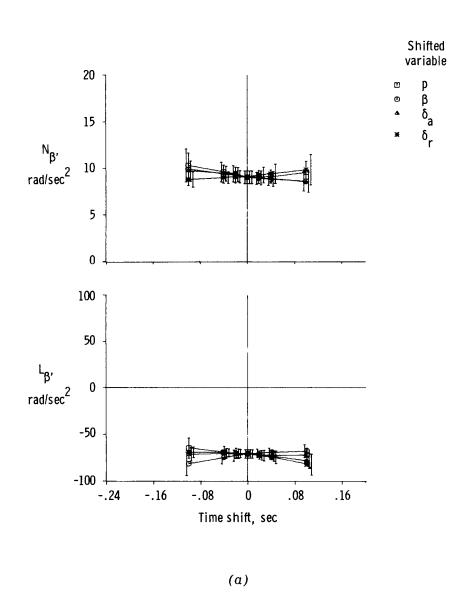


Figure 12. Estimated lateral-directional derivatives and uncertainty levels as a function of time-shift increment for a δ_a and δ_r maneuver. Aircraft E.

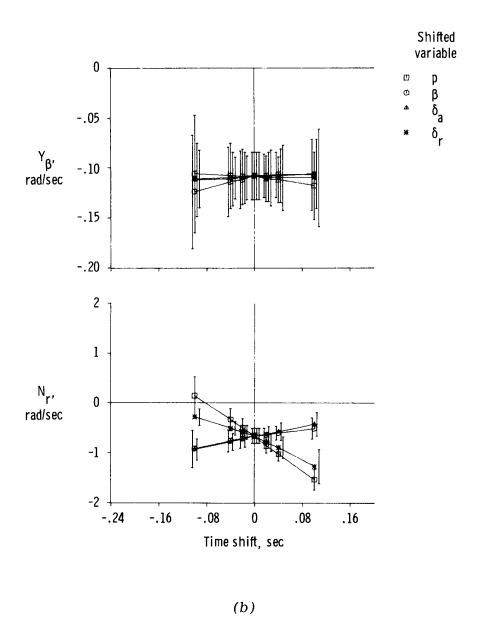


Figure 12. Continued.

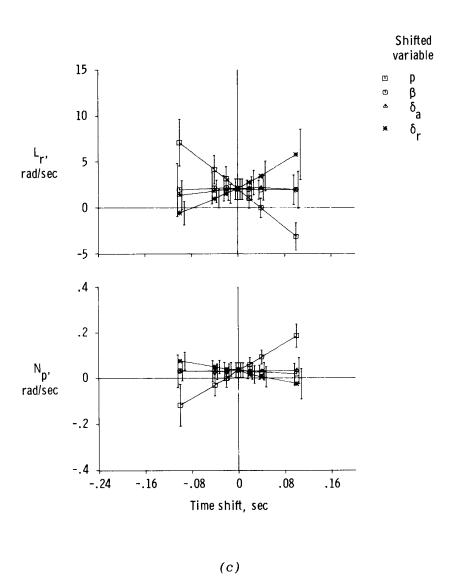


Figure 12. Continued.

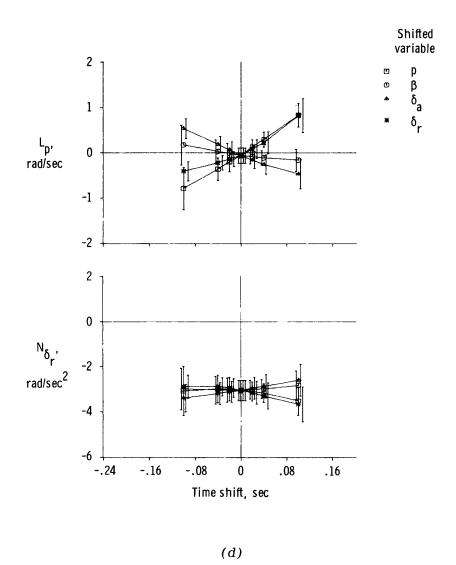


Figure 12. Continued.

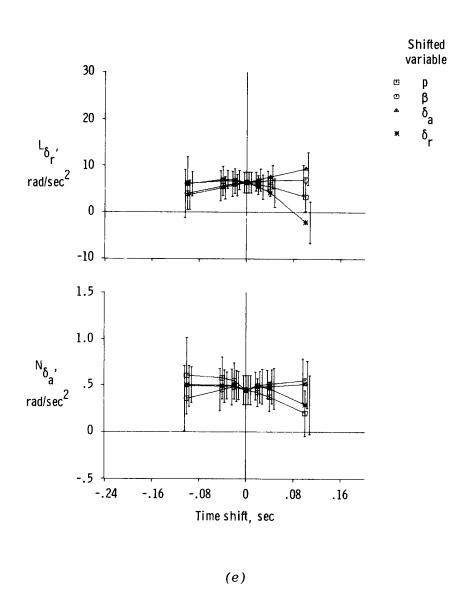


Figure 12. Continued.

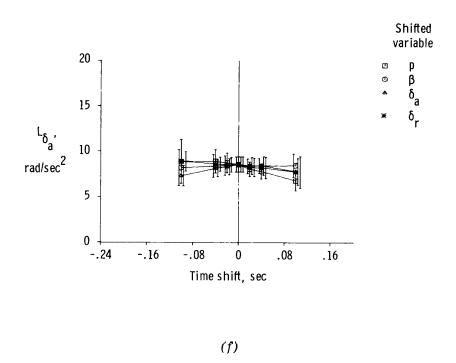


Figure 12. Concluded.

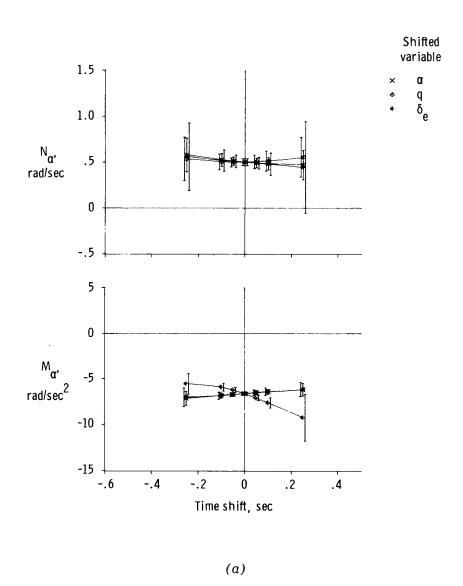


Figure 13. Estimated longitudinal derivatives and uncertainty levels as a function of time-shift increment for a $\boldsymbol{\delta}_e$ maneuver. Aircraft B.

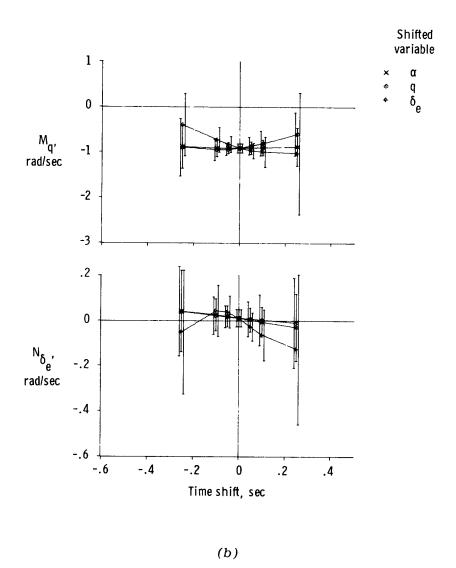


Figure 13. Continued.

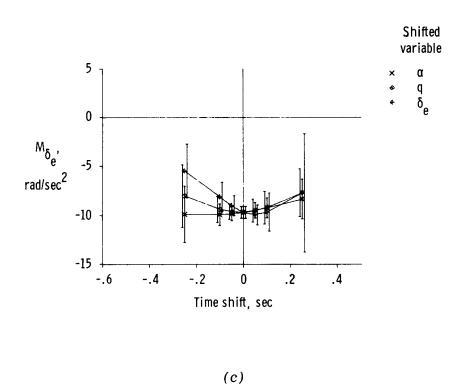


Figure 13. Concluded.

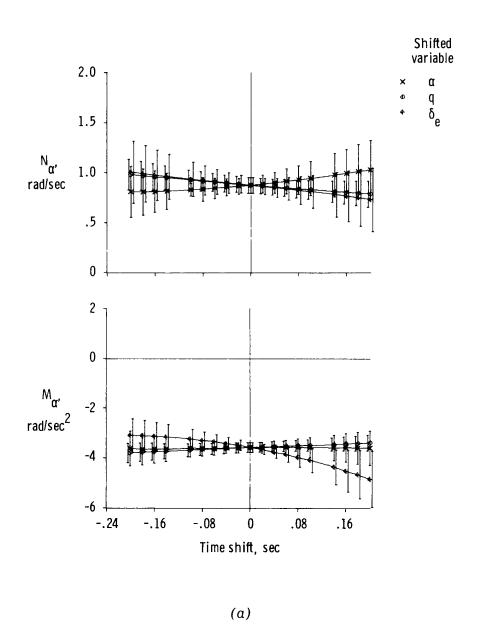


Figure 14. Estimated longitudinal derivatives and uncertainty levels as a function of time-shift increment for a $\boldsymbol{\delta}_e$ maneuver. Aircraft C.

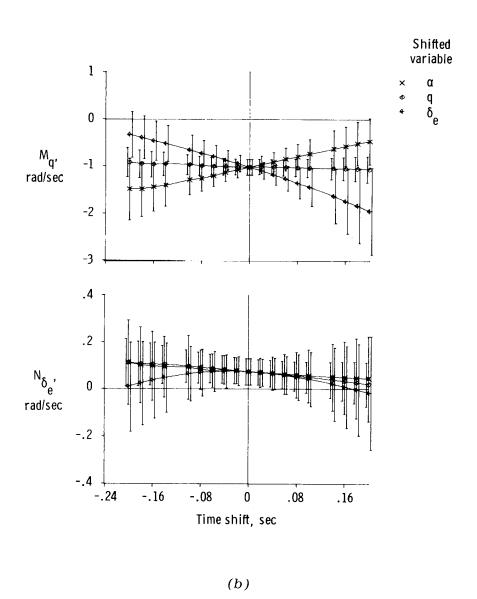
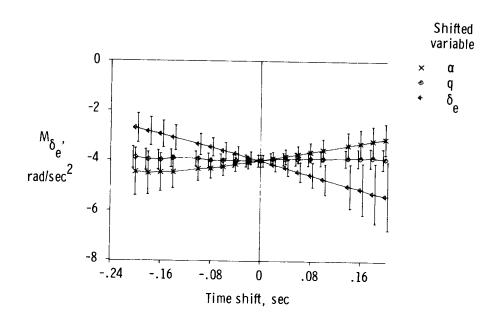



Figure 14. Continued.

(c)

Figure 14. Concluded.